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A B S T R A C T

Alzheimer’s Disease is the most common cause of dementia. Accurate diagnosis and prognosis of this disease
are essential to design an appropriate treatment plan, increasing the life expectancy of the patient. Intense
research has been conducted on the use of machine learning to identify Alzheimer’s Disease from neuroimaging
data, such as structural magnetic resonance imaging. In recent years, advances of deep learning in computer
vision suggest a new research direction for this problem. Current deep learning-based approaches in this
field, however, have a number of drawbacks, including the interpretability of model decisions, a lack of
generalizability information and a lower performance compared to traditional machine learning techniques.
In this paper, we design a two-stage framework to overcome these limitations. In the first stage, an ensemble
of 125 U-Nets is used to grade the input image, producing a 3D map that reflects the disease severity at
voxel-level. This map can help to localize abnormal brain areas caused by the disease. In the second stage,
we model a graph per individual using the generated grading map and other information about the subject.
We propose to use a graph convolutional neural network classifier for the final classification. As a result,
our framework demonstrates comparative performance to the state-of-the-art methods in different datasets for
both diagnosis and prognosis. We also demonstrate that the use of a large ensemble of U-Nets offers a better
generalization capacity for our framework.
1. Introduction

1.1. Context

Alzheimer’s Disease (AD) is a common neurodegenerative disease
characterized by the progressive impairment of cognitive functions.
This pathology is the most common type of dementia and a major cause
of mortality in people over 65 years old (Wong, 2020). Memory loss is
the first symptom of AD, and it gets worse over time. As the disease
progresses, AD patients require help even with basic activities, making
a significant impact on their daily lives as well as their family. In 2006,
there were 26.6 million AD patients worldwide (Brookmeyer et al.,
2007) which increased to 46.8 million in 2015. Moreover, this number
is expected to reach 131.5 million in 2050 (Herrera et al., 2016).
As a result, the costs of caring for Alzheimer’s patients are rapidly
increasing. Furthermore, more treatments and services are required
over time, continuously driving up those costs. Consequently, early and
accurate detection of Alzheimer’s Disease is critical for the development
of new therapies, slowing disease progression, and reducing associated
costs.
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The prodromal stage of AD is Mild Cognitive Impairment (MCI)
(Markesbery, 2010). People may experience minor changes in cogni-
tive abilities at this stage but there is still no impact on their daily
lives (Albert et al., 2011). Statistically, 10%–17% of people with MCI
will progress to AD over a few years while other MCI patients will
remain stable (Hamel et al., 2015). The first group refers to progressive
MCI (pMCI) and the second one refers to stable MCI (sMCI). Besides
the need of distinguishing AD patients from cognitively normal people
(CN) (i.e., AD diagnosis), identifying pMCI patients from sMCI patients
(i.e., AD prognosis) is even more crucial to apply appropriate therapies
and slow down the transition from MCI to AD. Therefore, a fast and
accurate tool for both AD diagnosis and prognosis is expected to help
clinician to take care of the patient as soon as possible.

Brain atrophy is an important biomarker of Alzheimer’s disease.
Many studies state that this morphological change may occur before the
first cognitive symptoms of AD (Gordon et al., 2018; Jung et al., 2021;
Coupé et al., 2015; Bron et al., 2021). Those anatomical changes can
be identified with the help of structural magnetic resonance imaging
(sMRI) (Bron et al., 2015). Recently, with the advances of convolutional
neural networks (CNN), a large number of methods have been proposed
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for automatic AD diagnosis and prognosis using sMRI (Wen et al., 2020;
Al-Shoukry et al., 2020; Ebrahimighahnavieh et al., 2020). Indeed, over
the last decade, Deep Learning (DL) has demonstrated breakthrough
performance in natural image classification. Unlike traditional machine
learning algorithms, deep learning allows to automatically extract dis-
criminative features from the input without prior knowledge. It has also
received a lot of attention in medical imaging analysis, where it can
help clinicians to follow disease progression. However, the large size of
3D sMRI and the limited GPU memory has required to adapt DL meth-
ods to medical imaging. These methods can be categorized into: 2D
slice-based methods, 3D subject-based methods, 3D region-of-interest
(ROI) methods and 3D patch-based methods.

1.2. Related works

2D slice-based methods: The concept behind slice-based
approaches is that a minimal number of 2D slices may accurately depict
the disease status. Some methods employ their own strategy to extract
the most appropriate 2D slices from 3D sMRI, while others use standard
image projections (i.e., coronal, sagittal, axial plane) (Ebrahimighah-
navieh et al., 2020). Valliani et al. considered only the median axial
slice of sMRI and used ResNet for AD diagnosis (Valliani et al., 2017).
Pan et al. trained 123 classifiers for 123 2D slice positions of three
projection planes for both AD diagnosis and prognosis (Pan et al.,
2020). The 15 models with the highest accuracy on validation set were
chosen to form the final ensemble model. Qiu et al. manually chose
three slice positions to analyze well-known regions associated with
Alzheimer’s disease: lateral ventricles, inferior temporal, and middle
temporal cortices (Qiu et al., 2018). Three CNN models (one per region)
were then trained for the problem of classification CN vs. MCI. The final
result was based on the majority vote. Entropy-based sorting is another
method to select slice positions. It is based on the hypothesis that a
slice with higher intensity variation is more informative. This strategy
was used in Hon et al. (2017) and Jain et al. (2019) to select the most
32 informative slices for various AD classification tasks. All of these
slice-based methods have the advantage of being based on well-known
CNNs architectures dedicated to natural image classification. However,
a comparative study showed that 2D slice-based methods were less
efficient than 3D methods (Wen et al., 2020). This study explained that
spatial information is not fully exploited by 2D slice-based methods
which limits their performance.

3D subject-based methods: Recently, more methods using the
whole 3D MRI have been proposed for AD classification (3D subject-
based methods). In general, these models have fewer layers than 2D
slice-based approaches due to the limited computing capacity. Back-
ström et al. used a 3D CNN with 8 layers for AD diagnosis (Bäckström
et al., 2018). Yee et al. used dilated convolution to increase the model
depth to 11 layers (Yee et al., 2021). In doing so, they improved the
receptive field while keeping a reasonable number of parameters. VGG
and ResNet are usually employed by many authors for classification
tasks in natural images. In Korolev et al. (2017), the authors imple-
mented 3D version of these two architectures and showed comparable
performance of both models for different AD classification tasks. Mod-
ern architecture like inception module was also proposed in Oh et al.
(2019). Li et al. proposed a multi-model for AD diagnosis (Li et al.,
2017). As each model had a different receptive field, the ensemble
model was expected to be able to capture both global and local features.
Overall, 3D subject-based methods have the advantage of preserving
spatial information. However, since the 3D architectures are shallower,
with current memory limitations these models do not yet offer optimal
performance.

3D regions-of-interest (ROI) methods: With a limited computing
capacity, reducing the input dimension is a good way to increase the
model complexity. Many methods focused on particular parts of the
brain known to be related to AD. Only one or a few small 3D cubic
2

sub-volumes located at specific brain structures are used as input.
Consequently, deeper models can be used and more complex patterns
can be captured. The hippocampal region is a ROI well-known to be
affected by AD (Schuff et al., 2009). Huang et al. cropped a region
centered at the hippocampi from sMRI. They used a VGG-like architec-
ture for classification (Huang et al., 2019). Cui et al. used two cubic
sub-volumes surrounding the left and right hippocampus to exploit
also their adjacent regions for accurate AD classification (Cui et al.,
2019). They suggested that these areas, including the parahippocampus
and amygdala, may be involved in AD. The main drawback of this
type of method is that they only use the information around a priori
defined anatomical regions. In contrast, alterations caused by AD can
affect other brain areas (Wachinger et al., 2016). Therefore, relevant
information outside of the selected ROIs is not used, limiting model
performance.

3D patch-based methods: Another way to reduce the input dimen-
sion is to use 3D patch-based methods. An MRI is simply divided into
multiple smaller patches, all of them are then used for training. Cheng
et al. extracted 27 overlapping patches that were uniformly distributed
across the whole brain. They then trained 27 models (one per patch)
and an ensemble model aggregating patch-level results to make the
final decision (Cheng et al., 2017). Li et al. divided the original MRI
into 27 non-overlapping patches (Li et al., 2018). These patches were
grouped into different clusters and one CNN was trained per cluster for
the AD diagnosis problem. The final decision was made by ensembling
these models. In several studies, Liu et al. used a landmark detection
algorithm to locate the most informative patches in sMRI (Liu et al.,
2018a,b, 2017). In Liu et al. (2018a), the authors trained 27 different
models (one per patch) for the classification problem. The final deci-
sion was obtained by majority voting strategy. In Liu et al. (2018b),
they designed an end-to-end CNN model with multiple branches, each
one analyzing one patch. The learned features were concatenated and
forwarded through a final CNN for AD classification. In Liu et al.
(2017), they constructed multi-channels input from extracted patches
and used a simple CNN for AD classification. Lian et al. performed a
voxelwise anatomical correspondence across all available images (Lian
et al., 2020). They then selected 120 voxel locations and used them as
centers for extracting 120 patches. They built a single end-to-end CNN
model in which feature representations learned from patch-level was
concatenated at regional-level, feature representation at regional-level
was then concatenated to provide the decision at subject-level. From a
literature review, it appears that a single model is not enough to capture
the diverse patterns of all patch locations (Wen et al., 2020). Indeed,
methods using multiple models (Cheng et al., 2017; Li et al., 2018;
Liu et al., 2018a) offer better AD classification accuracy. Compared to
previously detailed strategies, 3D patch-based methods enable to fully
exploit the 3D information, to drastically reduce memory requirement
and to analyze the entire MRI.

1.3. Current limitations of DL in AD classification

Although many efforts were made to adapt deep learning methods
to AD classification, existing methods still present several limitations.
Indeed, current approaches have limited prognosis performance and
usually suffer from a lack of generalization and interpretability.

Limited Performance: At the time of writing this paper, CNN
based-models seemed not to perform better than conventional ma-
chine learning methods (e.g., support vector machine SVM). Bron et
al. showed similar performance between CNN and SVM models while
carefully following the state-of-the-art CNN designs (Bron et al., 2021).
In another study, Wen et al. (2020) even found that their linear SVM
model was at least as good as the best CNN model for AD diagnosis and
better for AD prognosis. They both suggested that a more sophisticated
DL architecture may help for better performance.

Limited Generalization: A recent survey showed that about 90%
of studies use the same dataset (i.e., ADNI dataset) to evaluate their

model performance which limits our knowledge of CNN performance
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on other databases (Ebrahimighahnavieh et al., 2020). Moreover, most
of the studies mentioned above used the same dataset for training
and testing. Such validation framework is known to over-estimate
method performance. Indeed, in-domain validation is dangerous as
methods showing high performance on a single dataset might just
better capture the particular characteristics of that dataset and might
poorly perform in another dataset (Thibeau-Sutre et al., 2022). As
a consequence, current DL literature offers limited knowledge about
the generalization capability of DL methods on external datasets. This
limitation does not only apply to AD classification application but also
to other diseases (e.g., Frontotemporal Dementia (Termine et al., 2022),
Parkinson’s disease (Mei et al., 2021), etc.). A general cause leading to
a low generalization capacity is overfitting on the training set (Wen
et al., 2020). Especially, this often occurs when the size of the training
domain is too small. To alleviate this problem, we applied several data
augmentation techniques during the training process (see Section 3.5),
making the model more robust to heterogeneity. Furthermore, our use
of a large number of models (see Section 3.3) that can be seen as
an ensemble model allows the reduction of generalization error (Kotu
et al., 2015).

Limited Interpretation and Explanation: Besides the need for an
ccurate and generalizable AD classification model, understanding the
odel decision is also vital. In this study, we consider two termi-
ologies: interpretability and explainability as in Barredo Arrieta et al.
2020). Interpretability refers to the passive characteristic of a model
hat can be directly understood by humans. By contrast, explainability
efers to external procedures applied to a model to discover its in-
ernal functionalities. The majority of current deep learning methods
se an external explainable method (e.g., Class Activation Mapping,
radient Class Activation Mapping, Guided Backpropagation) to study

heir model decision. However, some explainable methods (i.e., Guided
ackpropagation and Guided Gradient Class Activation Mapping) pro-
uce visually and quantitatively similar explanations between a model
andomly-initialized and a trained model. This makes analysis based
n the produced explanations suspicious (Adebayo et al., 2018). In Yee
t al. (2021), two explainable methods were applied to the same model
ut different results were obtained. Moreover, in Bron et al. (2021),
he obtained saliency map showed regions known to be little affected
y AD. Indeed, each explainable method works differently, so the
iscovery may not be unique or little informative. For an interpretable
odel instead, humans can directly infer its characteristic without

osing information due to additional actions. Thus, this kind of method
eems to be more valuable to understand the model decision. However,
o the best of our knowledge, there is currently few interpretable
ethods for AD classification, with our definition (Bass et al., 2020,
021).

.4. Contributions

In this paper, to address these current major limitations of DL
ethods, we propose a novel interpretable, generalizable and accurate
eep framework for both AD diagnosis and prognosis. This clinical tool
s available at https://volbrain.net.

First, we propose a novel Deep Grading (DG) biomarker to improve
he interpretability of deep model outputs. Inspired by the patch-based
rading frameworks (Coupé et al., 2015, 2012b; Tong et al., 2017; Hett
t al., 2021; Coupé et al., 2012a; Hett et al., 2018a), this new biomarker
an capture CN, AD patterns from MRI input and provides a grading
ap with a score between −1 and 1 at each voxel that reflects the
isease severity. This interpretable biomarker may assist clinicians in
ocalizing brain regions affected by AD, allowing them to make more
nformed decisions.

Second, we propose to extend the concept of Collective Artificial
ntelligence (AI) to AD diagnosis and prognosis. The collective AI con-
ists of using a large number of communicating neural networks, each
3

f them is specializing in a unique brain location. The global result is
hen obtained by fusing the local results. For the brain segmentation ap-
lication, it has demonstrated a better generalization capacity against
omain shift (Coupé et al., 2020; Kamraoui et al., 2022). In this study,
e propose a robust fusion strategy in the generation of the global
eep grading map using validation accuracy. Our experiments show an
mprovement of model performance using this strategy. Moreover, this
ould also help to emphasize the brain locations related to AD, making
he global deep grading map more reliable.

Finally, we propose to use graph-based modeling to better cap-
ure AD signature. Concretely, we propose to use graph convolutional
etwork (GCN) model for AD classification problems. As a result,
his shows state-of-the-art in performance for both AD diagnosis and
rognosis.

This paper is an extension of the conference paper (Nguyen et al.,
021), with several application-based contributions: (i) a study of graph
esign (i.e., edge connectivity) and the choice of GCN as a classifier
o boost the framework performance, (ii) an analysis of grading map
nterpretability with respect to the subject’s age and (iii) a study of the
onsistency of our grading-based method to domain shift.

. Materials

.1. Datasets

The data used in this study, consisting of 2106 subjects, were
btained from multiple cohorts: the Alzheimer’s Disease Neuroimaging
nitiative (ADNI) (Jack et al., 2008), the Open Access Series of Imaging
tudies (OASIS) (LaMontagne et al., 2019), the Australian Imaging,
iomarkers and Lifestyle (AIBL) (Ellis et al., 2009) and the Minimal
nterval Resonance Imaging in Alzheimer’s Disease (MIRIAD) (Malone
t al., 2013). We used the baseline T1-weighted MRI available in each
f these studies. Each dataset contains AD patients and CN subjects.
DNI1 and AIBL datasets also include pMCI and sMCI patients. As

n Wen et al. (2020), patients were considered as pMCI if they were
iagnosed as MCI at the baseline and progressed to AD within 36
onths. By contrast, patients were considered as sMCI if they were
iagnosed as MCI at the baseline and all of sessions in the following
6 months. The group lists were obtained using ClinicaDL1 (Wen et al.,
020) and thus the selection criteria is similar. Table 1 summarizes
he number of participants and their age distribution for each dataset
sed in this study. T-tests showed no statistical differences in terms of
ge between two groups of the same dataset. During our experiments,
D and CN subjects from ADNI1 were used for training and all the
ther subjects as testing set. To minimize possible bias learned through
raining, we selected the same number of AD/CN subjects from ADNI1
or training without significant differences between the two age distri-
utions (𝑝𝑣𝑎𝑙𝑢𝑒 = 0.27). The evaluation consisted of two different tasks:
iagnosis (main task) and Prognosis (unknown task).

.2. Preprocessing

All the T1w MRI were preprocessed using the following steps: (1)
enoising (Manjón et al., 2010), (2) inhomogeneity correction (Tustison
t al., 2010), (3) affine registration into MNI space (181 × 217 × 181

voxels at 1 mm × 1 mm × 1 mm) (Avants et al., 2011), (4) inten-
sity standardization (Manjón et al., 2008) and (5) intracranial cavity
(ICC) extraction (Manjón et al., 2014). After preprocessing, we used
AssemblyNet2 (Coupé et al., 2020) to segment 133 brain structures
(see Fig. 1). In this study, brain structure segmentation is used to
determine the structure volumes (i.e., normalized volume in % of ICC)
and aggregate information to build the structured-based grading map
(see Section 3.2 and Fig. 1).

1 https://github.com/aramis-lab/clinicadl.
2 https://github.com/volBrain/AssemblyNet.

https://volbrain.net
https://github.com/aramis-lab/clinicadl
https://github.com/volBrain/AssemblyNet
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Table 1
Summary of participants used in our study. Data used for training are in bold.

Dataset CN AD sMCI pMCI

ADNI1
No. subjects 170 170 129 171
Age (Mean ± Std) 75.9 ± 5.2 75.1 ± 7.2 74.6 ± 7.5 74.5 ± 7.0
𝑝𝑣𝑎𝑙𝑢𝑒 of t-test 0.27 0.91

ADNI2
No. subjects 149 181
Age (Mean ± Std) 74.1 ± 6.6 74.0 ± 7.2
𝑝𝑣𝑎𝑙𝑢𝑒 of t-test 0.09

AIBL
No. subjects 232 47 12 30
Age (Mean ± Std) 72.3 ± 6.7 72.7 ± 8.6 72.5 ± 6.2 73.9 ± 8.0
𝑝𝑣𝑎𝑙𝑢𝑒 of t-test 0.72 0.67

OASIS
No. subjects 658 98
Age (Mean ± Std) 68.6 ± 8.9 76.8 ± 8.4
𝑝𝑣𝑎𝑙𝑢𝑒 of t-test 1.4e−16

MIRIAD
No. subjects 23 46
Age (Mean ± Std) 69.6 ± 7.0 69.3 ± 7.0
𝑝𝑣𝑎𝑙𝑢𝑒 of t-test 0.86
Fig. 1. Overview of our processing pipeline. The MRI image, its segmentation and the deep grading map illustrated here are from an AD subject.
3. Method

3.1. Method overview

An overview of our proposed pipeline is shown in Fig. 1. Our
pipeline is designed based on different blocks, each of which serves a
distinct purpose. First, the role of the collective AI block is to simulate
a big model that cannot fit into a GPU by a large ensemble of smaller
models. This strategy may help to capture more disease-related patterns
than a single model. Indeed, it shows an improvement in generalization
(see Section 4.1.1) compared to other techniques. Second, the deep
grading map provides a quantitative and interpretable assessment of
the progression of AD. This 3D map can show AD-related regions,
providing insight into the model prediction and helping clinicians in
making reliable decisions. We use a segmentation here for a better
visualization of the grading map and to reduce the data dimensionality
in a meaningful way for experts. Finally, we use GCN to capture the
relationship between brain structures. We demonstrate that GCN is
well-adapted with grading features for AD detection (see Section 4.1.3).

Concretely, a preprocessed T1-weighted MRI with the size of
181 × 217 × 181 voxels was downsampled to 91 × 109 × 91 voxels to
reduce the computational cost. The downsampled image was divided
4

into 𝑘 × 𝑘 × 𝑘 (i.e., 𝑘 = 5) overlapping patches of the same size
(i.e., 32 × 48 × 32 voxels). We used 𝑚 = 𝑘 × 𝑘 × 𝑘 (i.e., 𝑚 = 125)
3D U-Nets to grade these patches. The 125 grading patches were fused
to reconstruct a global grading map of 91 × 109 × 91 voxels. This map
was upscaled using interpolation to have the same size as the original
input. After that, the segmentation of the original input (obtained with
AssemblyNet Coupé et al., 2020) was used to compute the average
grading score for each structure. In this way, we obtained a vector of s
elements where s is the number of segmented structures (i.e., 𝑠 = 133).
Finally, we created a fully connected graph with s nodes presenting the
characteristic of s structures (e.g., structure grading, structure volume,
subject’s age) and used a graph convolutional neural network for the
classification.

3.2. Deep grading

In AD diagnosis and prognosis, most of deep learning models only
use CNN as a binary classification tool. In this study, we use CNN
to produce 3D interpretable maps indicating the structural alterations
caused by AD.

To capture these anatomical alterations, we extend the idea of
several patch-based grading frameworks (Coupé et al., 2012b; Tong
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et al., 2017; Coupé et al., 2012a; Hett et al., 2018b). The main objective
is to provide a 3D grading map with a score between −1 and 1 at
each voxel reflecting the disease severity. In Coupé et al. (2012b),
the authors proposed to grade the hippocampus. For each voxel of
this structure, they defined a surrounding patch and used a locally
adaptive search algorithm to find the corresponding patch in all of
training images. Similarity scores were then computed between the
testing patch and training patches. These scores were used to estimate
the grade (i.e., degree of similarity to one group or another) for the
considered voxel. Then, an average grading value was computed for
the structure. The subject was classified as AD or CN depending on
the sign of the grading value. They found that grading feature is more
powerful than the measure of structure volume in distinguishing AD
and CN subjects. Tong et al. used a sparse coding process to select a
small number of discriminative voxels over the whole brain (Tong et al.,
2017). They showed that grading feature was efficient for AD prognosis
even when training with AD/CN subjects. Contrary to these previous
methods based on handcrafted feature extraction, here we propose a
novel deep grading framework based on a large ensemble of 3D U-Nets
(i.e., 125 U-Nets).

Concretely, each of our 125 U-Nets (with the architecture similar
to Coupé et al. (2020)) takes a 3D sMRI patch (e.g., 32 × 48 × 32
voxels in the MNI space) and outputs a grading map with value in range
[−1, 1] for each voxel. Voxels with a higher value are considered closer
to AD, while voxels with a lower value are considered closer to CN.
For the ground-truth used during training, we assign the value 1 (resp.
−1) to all voxels inside a patch extracted from an AD patient (resp. CN
subject). All voxels outside of ICC are set to 0.

Once trained, the deep models are used to grade patches. These
local outputs are gathered to reconstruct the final grading map (see
Section 3.3). Using the structure segmentation, we represent each brain
structure grading by its average grading score (see Fig. 1). This anatom-
ically driven aggregation allows better and meaningful visualization of
the disease progression. In this way, during the classification step (see
Section 3.4), each subject is encoded by an s-dimensional vector where
s is the number of brain structures (i.e., 𝑠 = 133).

3.3. Collective AI

In medical analysis, high generalization capacity across domains
and unknown tasks presents potential clinical value as real data is
diverse and may come from any source. As recently shown in Bron
et al. (2021) and Wen et al. (2020), current deep learning methods
for AD classification can well generalize to similar datasets but poorly
perform on datasets having differences such as MRI protocols, age
ranges, country of origin or inclusion criteria. In our testing datasets,
different age range and MRI protocol were present in OASIS, different
country of origin was present in AIBL and different inclusion criteria
was present in MIRIAD. It should be noted that for OASIS, MCI and AD
patients are mixed, so we used the ADNI inclusion criteria to separate
AD patients and be able to assess the diagnosis of AD.

In this work, we propose to use an innovative collective artificial
intelligence strategy to improve the generalization across domains and
to unseen tasks. As recently shown for segmentation problems (Coupé
et al., 2020; Kamraoui et al., 2022), the use of a large number of
compact networks capable of communicating offers a better capacity
for generalization. For brain segmentation, this strategy showed strong
generalization to previously unexplored domains (Coupé et al., 2020)
(i.e., trained on healthy adults and tested on children and AD patients).
For the problem of multiple sclerosis lesion segmentation, this strategy
also demonstrated the consistency across different natures of training
domains (Kamraoui et al., 2022). There are many other advantages of
using the collective AI strategy. First, the use of a large number of
compact networks is equivalent to a big neural network with more
filters but the computation capacity required remains affordable. It
5

should be noted that the same model taking the whole image at full
resolution cannot be trained due to the limited memory of current
GPUs. Second, the voting system based on a large number of specialized
and diversified models helps the final grading decision to be more
robust against domain shift and different tasks.

Concretely, after preprocessing and downsampling steps, we obtain
𝑚 = 𝑘 × 𝑘 × 𝑘 patches 𝑃1,… , 𝑃𝑚 (i.e., 𝑚 = 125) with about 50% over-
lapping volume. During training, for each patch location, a specialized
model is trained. Therefore, we train 𝑚 3D U-Nets to cover the whole
image (see Fig. 1). Moreover, each U-Net is initialized using transfer
learning from its nearest neighbor U-Net, except the first one trained
from scratch as proposed in Coupé et al. (2020). As adjacent patches
share common patterns, this communication allows grading models to
share useful knowledge between them.

To obtain the final grading map, we propose a robust fusion strategy
based on an average between overlapping patches, weighted by the
accuracy obtained on the validation set. This weighted average for
grading score fusion is computed as follows:

𝐺𝑖 =

∑

𝑥𝑖∈𝑃𝑗 𝛼𝑗 ∗ 𝑔𝑖𝑗
∑

𝑥𝑖∈𝑃𝑗 𝛼𝑗

where 𝐺𝑖 is the grading score of the voxel 𝑥𝑖 in the final grading map,
𝑔𝑖𝑗 is the grading score of the voxel 𝑥𝑖 in the local grading patch 𝑃𝑗 , and
𝛼𝑗 is the balanced accuracy on validation of the patch 𝑗. This weighted
vote enables to give more weight to the decision of accurate models
during the reconstruction.

3.4. Feature classification

Most of current methods globally compared classes (e.g., AD vs. CN)
to perform classification. This kind of approach finds useful information
from inter-subject similarities. For Alzheimer’s disease, the anatomical
changes may occur in different brain areas and are different between
subjects. These intra-subject variabilities may provide useful informa-
tion for accurate AD detection. Consequently, it should be beneficial to
combine these two characteristics for efficient classification. This can
be done with the help of graph-based modeling. Indeed, following the
idea of Hett et al. (2018b), we modeled the intra-subject variabilities
using a graph representation to capture the relationships between brain
regions. We defined an undirected graph  = (N,E), where N =
𝑛1,… , 𝑛𝑠 is the set of nodes for the 𝑠 brain structures and E = 𝑠×𝑠 is the
matrix of edge connections. In our approach, all nodes were connected
with each other in a complete graph, where nodes embed brain features
(e.g., our proposed DG feature) and potentially other types of external
features.

Indeed, besides the grading map, the volume of structures obtained
from the segmentation could be helpful to distinguish AD patients from
CN since AD yields to structure atrophy (Tong et al., 2017; Hett et al.,
2018b). In addition, the subject’s age is also an important factor since
anatomical patterns in the brain of young AD patients could be similar
to elder CN. Therefore, the combination of those features is expected
to improve our classification performance. In our graph, each node
could embed the structure grading score DG, structure volume V, and
subject’s age A. All possible combinations are studied in Section 4.1.1.
Different types of graph edges are compared in Section 4.1.2. Finally,
we used a graph convolutional neural network (GCN) (Kipf et al.,
2017) as the way to pass messages between nodes and perform the
final decision. A comparison between different classifiers is provided
in Section 4.1.3 to explain our choice of GCN.

3.5. Implementation details

For each of the 125 patch locations, 80% of the training dataset
(i.e., ADNI1) was used for training a 3D U-Net and the remaining 20%
for validation. To avoid bias resulting from dataset imbalance, the train-
ing/validation sets employed the same number of AD and CN. As the
number of images in ADNI1 dataset was small, the training/validation
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Table 2
Comparison of different types of features for classification. All the edges are set to 1, the classifier used is GCN. Red: best result, Blue: second best result. The balanced accuracy
(BACC) is used to assess the model performance. The results are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN
subjects of the ADNI1 dataset. Value in bold: 𝑝 of one-sided Wilcoxon test comparing with our baseline (in gray) is lower than 0.05, meaning a significantly superior performance
is found compared to the baseline. A comparison using area under curve (AUC) is provided in Annexes.

No. Features Diagnosis (AD/CN) Prognosis (p/sMCI) Global diagnosis
(AD/CN)

Global prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32 𝑁 = 1434 𝑁 = 332

1 𝐷𝐺𝐼 88.6 82.3 88.0 96.2 68.2 71.4 88.4 68.2
2 𝐷𝐺𝐶𝑛𝑤 86.4 88.0 89.1 99.3 70.3 73.0 88.5 70.4
3 𝐷𝐺𝐶 87.2 88.5 88.9 99.8 70.6 75.4 89.0 71.0
4 𝑉 67.4 64.0 72.8 70.6 56.1 61.2 69.8 56.5
5 𝐴 50.5 52.7 46.1 42.2 49.8 50.3 46.5 50.0
6 𝑉 ,𝐴 63.2 59.8 58.5 54.5 52.9 55.7 57.6 53.0
7 𝐷𝐺𝐶 , 𝑉 86.3 88.4 88.4 98.7 70.8 75.2 88.3 71.0
8 𝐷𝐺𝐶 , 𝐴 87.5 92.1 88.8 99.0 73.8 74.5 89.5 73.7
9 𝐷𝐺𝐶 , 𝑉 , 𝐴 87.3 91.8 88.2 98.7 73.9 72.7 88.9 73.6
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data was re-split for each patch location to exploit the maximum
information possible. The model was trained with voxel-wise mean
absolute error (MAE) loss and Adam optimizer with a learning rate of
0.001. All voxels equally contribute to the loss function during training.
The training process is stopped after 20 epochs without improvement in
validation loss. We employed several data augmentation and sampling
strategies to alleviate the overfitting issue during training. To train
each U-Net, first, the corresponding cropping position of sub-volume
was randomly translated by 𝑡 ∈ {−1, 0, 1} voxel in 3 dimensions of the
image. Second, we sampled a sub-volume 𝑋1 (with the label 𝑌1) from
AD population, another sub-volume 𝑋2 (with the label 𝑌2) from CN
population and applied Mixup technique (Zhang et al., 2018) to create
a new sample: 𝑋𝑛𝑒𝑤 = 𝛼𝑋1 + (1 − 𝛼)𝑋2, 𝑌𝑛𝑒𝑤 = 𝛼𝑌1 + (1 − 𝛼)𝑌2 where
∼ 𝐵𝑒𝑡𝑎(0.3, 0.3). This sample was used as the only input during the

raining.
Once the DG feature was obtained, we represented each subject by

graph of 133 nodes. Each node represented a brain structure and
mbeds its characteristic (e.g., DG, V, A). Our classifier was composed
f three layers of GCN (Kipf et al., 2017) with 32 channels, followed
y a global mean average pooling layer and a fully connected layer
ith an output size of 1. The model was trained using the binary

ross-entropy loss, Adam optimizer with a learning rate of 0.0003. No
ata augmentation was applied during training. The training process
as stopped after 20 epochs without improvement in validation loss.
uring testing, we randomly added noise 𝑋 ∼  (0, 0.01) to the node

eatures and computed the average of 3 predictions to get the global
ecision (Wang et al., 2018). Experiments showed that it helps our GCN
o be more stable. For training and evaluating steps, we used a NVIDIA
ITAN X with 12 GB of memory. The total training time for 𝑚 = 125
-Nets and the GCN model is about 23 h. The total inference time of
ur method is about 1.63 s per preprocessed image.

. Experimental results

.1. Performance study

In this section, the 125 CNN grading models and the classifier were
rained using AD and CN subjects of the ADNI1 dataset. Then, we
ssessed their generalization capacity to domain shift using AD and
N subjects from ADNI2, AIBL, OASIS and MIRIAD. The generalization
apacity for unseen tasks was studied using pMCI, sMCI subjects (AD
rognosis) from ADNI1 (same domain) and AIBL (out of domain). Due
o the imbalanced nature of testing datasets, we used the balanced
ccuracy (BACC) and area under receiver operating characteristic curve
AUC) to measure the performance of different classifiers. The global
ACC/AUC for diagnosis and prognosis was measured with all available
esting images for each task. Each experiment was repeated ten times
6

to reduce bias related to random nature of DL training) and the
verage results was provided as final results. All comparisons were
ade using the Wilcoxon test by comparing the ten BACC/AUC values

btained over the 10 repetitions as recommended in Demšar (2006).
he one-sided test was applied to confirm a superior performance. A
onfidence level of 5% is used so that 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05 means the considered

result is significantly better than a chosen baseline.

4.1.1. Features for classification
In this part, we study the different feature types used as input of

the final classifier. The edges connecting the graph nodes are set to
1 in this comparison. The DG feature is denoted as 𝐷𝐺𝐶 (resp. 𝐷𝐺𝐼 )
when obtained with the collective (resp. individual) AI strategy. The
individual AI strategy refers to the use of a single U-Net to learn
patterns from all patches of the input image. We also denote 𝐷𝐺𝐶𝑛𝑤
for the no-weighted version of 𝐷𝐺𝐶 . The results of BACC performance
re presented in Table 2. The result of AUC are in Annexes (Table 7).

omparison of grading vs. volume
As discussed previously, brain atrophy is an important biomarker

f Alzheimer’s disease. Many studies used structure volume for AD
lassification and achieved encouraging results (Guo et al., 2014; Ledig
t al., 2018; Schmitter et al., 2015). So, we compare the proposed
iomarker (grading, exp. 3) and the classical one (volume, exp. 4) to
ssess the efficiency of our new biomarker. The additional evaluation
sing the age feature (exp. 5) was performed to confirm that no age
ias was present in the training/testing partitions.

The efficiency of 𝐷𝐺𝐶 (exp. 3) was clearly better than V (exp. 4).
𝐺𝐶 outperformed V in global diagnosis, global prognosis and all of

he tests on an individual dataset (all 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05). Thus, the proposed
iomarker 𝐷𝐺𝐶 presents an important interest for AD classification.

Moreover, we trained a UMAP (McInnes et al., 2020) with AD/CN
ubjects from ADNI1 and visualized the transformed test set in 2D space
see Fig. 2). The transformed data was colored with respect to the
iagnosis class. Two types of input were considered: grade (𝐷𝐺𝐶 ) and
olume (V). The grading feature was visually better to separate AD and
N subjects than the volume feature. To confirm this assessment, we
pplied K-means with 2 clusters (we considered 1 cluster for CN/sMCI
nd 1 cluster for AD/pMCI) to this 2D data to assess the separability
f the two clusters. The silhouette score (Rousseeuw, 1987) was used
o measure this separability. This score ranges from −1 to 1. A higher
alue means clusters are more distinguishable. As a result, the silhou-
tte score obtained with 𝐷𝐺𝐶 was 0.55, better than 0.41 obtained with
.
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Fig. 2. UMAP visualization of test set.
Table 3
Comparison of different graph edge types. The classifier used is GCN and the input features is 𝐷𝐺𝐶 and A. Red: best result, Blue: second best result. The balanced accuracy
(BACC) is used to assess the model performance. The results are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN
subjects of the ADNI1 dataset. A comparison using area under curve (AUC) is provided in Annexes.

Edge Diagnosis (AD/CN) Prognosis (p/sMCI) Global diagnosis (AD/CN) Global prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32 𝑁 = 1434 𝑁 = 332

Fully-one 87.5 92.1 88.8 99.0 73.8 74.5 89.5 73.7
Correlation 87.5 91.8 88.4 98.6 73.4 74.1 89.2 73.3
Volume difference 87.6 92.4 89.1 99.6 73.9 75.6 89.6 73.9
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omparison of collective AI features vs. individual AI features
We aimed at assessing the efficiency of the collective AI strategy.

o do this, we compared the efficiency of 𝐷𝐺𝐶 and 𝐷𝐺𝐼 features
exp. 1, 3) (see Table 2). Experimental results showed that 𝐷𝐺𝐶 (exp.
) is significantly better than 𝐷𝐺𝐼 (exp. 1) for both global diagnosis
𝑝𝑣𝑎𝑙𝑢𝑒 = 0.007) and global prognosis (𝑝𝑣𝑎𝑙𝑢𝑒 = 0.001). Consequently,
ollective AI strategy offered a significant improvement for unseen
omain (AD diagnosis) and unseen task (AD prognosis). In terms of
eneralization, 𝐷𝐺𝐶 alleviated the drop in performance in AIBL dataset
or AD diagnosis.

fficiency of the weighted fusion strategy in collective AI features
We validate the efficiency of the weighted fusion strategy in Collec-

ive AI by comparing this strategy with its no-weighted version (exp.
, 3) (see Table 2). Experimental results showed that 𝐷𝐺𝐶 (exp. 3) is
ignificantly better than 𝐷𝐺𝐶𝑛𝑤 (exp. 2) for global diagnosis (𝑝𝑣𝑎𝑙𝑢𝑒 =
.019) and similar for global prognosis (𝑝𝑣𝑎𝑙𝑢𝑒 = 0.188). Consequently,
he weighted fusion strategy can improve the model performance in AD
iagnosis while keeping a good performance in AD prognosis.

ombination of grading and additional features
Several works showed that complementary information about the

ubject could help to improve the performance of their classifier (Tong
t al., 2017; Hett et al., 2021). In these studies, different cognitive
cores were used such as MMSE, CDR-SB, RAVLT, FAQ, ADAS11, and
DAS13 cognitive tests. However, this information is not always avail-
ble. Instead, we employed brain structure volumes and the subject’s
ge as additional features here.

Four experiments were made using multiple types of features in
raph nodes (exp. 6, 7, 8, 9). The best performance of diagnosis and
rognosis was obtained using 𝐷𝐺𝐶 , 𝐴 (exp. 8) and it was significantly
etter than using only 𝐷𝐺𝐶 (exp. 3) for both global scores (all 𝑝𝑣𝑎𝑙𝑢𝑒 <
.05). Overall, using subject’s age in addition to 𝐷𝐺𝐶 produced the best
esults. Consequently, in the rest of the paper, we use 𝐷𝐺𝐶 and the age
eature as input for further analysis.
7

C

.1.2. Comparison of different types of graph edges
In this part, we compare different types of graph edges. In general,

hen constructing a graph from neuroimage data, there are different
ays to define the connection between nodes (Bessadok et al., 2021).
uang et al. defined it by counting fiber tracts in Diffusion Tensor

maging (Huang et al., 2020). Li et al. computed this as the pairwise
orrelations of functional magnetic resonance imaging time series (Li
t al., 2020). With sMRI data, Mahjoub et al. defined the connection
etween two ROI as the absolute difference between their averaged
ortical attributes (Mahjoub et al., 2018). In this study, we propose
ifferent edge types as follows: Fully-one edge (all edges are set to
), correlation-based edge (the edge connecting each pair of brain
tructures is defined as the Pearson’s correlation based on their grading
cores), volume difference-based edge (the edge connecting each pair of
rain structures is the absolute difference of their volumes). The results
f the comparison are presented in Table 3. We observe that the edge
ased on structure volume difference leads to a better classification
erformance than other tested types of edge in all datasets and all tasks.
hus, we use the edge based on structure volume difference in the rest
f the paper.

.1.3. Comparison of different classifiers
In this section, we study different solutions for the graph classifica-

ion. We compare the use of GCN with other classifiers such as SVM,
ulti-layer perceptron, Transformer Graph (Shi et al., 2020), sample

nd aggregate graph (SAGE) (Hamilton et al., 2017), residual gated
raph (ResGatedGraph) (Bresson et al., 2017), graph attention network
GAT) (Veličković et al., 2017) and topology adaptive graph (TAG) (Du
t al., 2017). Table 4 shows the results of this comparison. We can
bserve that GCN achieves the best performance most of the time.
onsequently, we chose GCN as a classifier in our framework.
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Table 4
Comparison of different classifiers. For graph-based approaches (i.e., all the approaches except SVM and multi-layer perceptron), the edge based on structure volume difference is
used and the input features is 𝐷𝐺𝐶 and A. Red: best result, Blue: second best result. The balanced accuracy (BACC) is used to assess the model performance. The results are the
average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN subjects of the ADNI1 dataset. A comparison using area under curve
(AUC) is provided in Annexes.

Classifier Diagnosis (AD/CN) Prognosis (p/sMCI) Global diagnosis (AD/CN) Global prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32 𝑁 = 1434 𝑁 = 332

SVM 85.7 88.7 87.4 95.6 69.0 69.7 87.6 68.9
Multi-layer perceptron 82.5 87.4 83.4 88.0 66.4 61.7 84.6 65.8
Transformer 87.9 91.3 87.9 98.5 72.8 75.4 89.1 72.9
SAGE 87.2 91.8 88.1 98.3 73.4 73.3 88.9 73.2
ResGatedGraph 84.6 87.6 81.9 92.7 72.5 70.8 84.0 70.3
GAT 87.7 91.6 88.7 98.2 73.4 72.5 89.3 73.1
TAG 87.4 91.3 87.8 97.7 73.3 74.2 88.8 73.2
GCN 87.6 92.4 89.1 99.6 73.9 75.6 89.6 73.9
Table 5
Comparison of our method with state-of-the-art methods with available code that have been retrained on our training dataset and tested on our dataset. Red: best result, Blue:
second best result. The balanced accuracy (BACC) is used to assess the model performance. All the methods are trained on the AD/CN subject of the ADNI1 dataset, the same
training/testing partition is used for evaluation. A comparison using area under curve (AUC) is provided in Annexes.

Method Diagnosis (AD/CN) Prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32

Patch-based CNN (Wen et al., 2020) 72.4 63.4 67.5 63.0 62.5 47.5
ROI-based CNN (Wen et al., 2020) 79.7 74.4 79.0 81.5 65.5 62.5
Subject-based CNN (Wen et al., 2020) 76.1 81.5 86.0 89.1 64.8 55.8
Voxel-based SVM (Wen et al., 2020) 83.3 88.2 87.4 93.5 67.2 70.0

Our method 87.6 92.4 89.1 99.6 73.9 75.6
Table 6
Comparison of our method with state-of-the-art methods using published results. Red: best result, Blue: second best result. The balanced accuracy (BACC) is used to assess the
model performance. All the methods are trained on the AD/CN subject of the ADNI1 dataset. However, there are many different factors: number of subjects in training/testing
sets, selection criteria, etc. A comparison using area under curve (AUC) is provided in Annexes.

Method Diagnosis (AD/CN) Prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL

Landmark-based CNN (Liu et al., 2018b) 90.8 – – 92.4 – –
Hierarchical FCN (Lian et al., 2020) 89.5 – – – 69.0 –
𝐴𝐷2𝐴 (Guan et al., 2020) 88.3 87.8 – – – –
Efficient3D (Yee et al., 2021) - 90.7 91.9 95.7 70.1 65.2

Our method 87.6 92.4 89.1 99.6 73.9 75.6
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4.1.4. Comparison with state-of-the-art methods
Tables 5 and 6 summarize the current performance in BACC of

state-of-the-art methods proposed for AD diagnosis and prognosis clas-
sification that have been validated on external datasets. A comparison
of performance in AUC is provided in Annexes (Tables 10 and 11). In
this comparison we consider five categories of deep methods: patch-
based strategy based on a single model (Patch-based CNN Wen et al.,
2020), patch-based strategy based on multiple models (Landmark-based
CNN Liu et al., 2018b, Hierarchical FCN Lian et al., 2020), ROI-based
strategy based on a single model focused on hippocampus (ROI-based
CNN Wen et al., 2020), subject-based considering the whole image
based on a single model (Subject-based CNN Wen et al., 2020, Efficient
3D Yee et al., 2021 and 𝐴𝐷2𝐴 Guan et al., 2020) and a classical voxel-
ased model using a SVM (Voxel-based SVM Wen et al., 2020). Only
ethods evaluated across different datasets were selected here.

omparison with methods under the same condition
For a fair comparison, we retrained and evaluated four methods

hose code is available: Patch-based CNN, ROI-based CNN, Subject-
ased CNN and Voxel-based SVM (Wen et al., 2020) with our train-
8

ng/testing data. The results are reported in Table 5. q
For AD diagnosis (i.e., AD/CN), as ADNI2 and ADNI1 (training set)
re very similar, we used the performance on ADNI2 as a reference
o assess the capacity of generalization on other datasets (i.e., AIBL,
ASIS, MIRIAD). Based on that, we observed a major drop in per-

ormance in Patch-based CNN method for AIBL, OASIS and MIRIAD,
OI-based CNN method for AIBL (see Table 5). For AD prognosis
i.e., pMCI/sMCI), we also observed a drop in performance between
IBL and ADNI1 (training domain) in Patch-based CNN method, ROI-
ased CNN method and Subject-based CNN method. Overall, our
ethod shows a good generalization capacity against domain shift and

o unseen tasks compared to other methods. Moreover, our method
lways achieves the best result in terms of performance for all datasets/
asks and outperforms the traditional method (i.e., Voxel-based SVM)
y a large margin.

iterature comparison
We also detail the results of four other methods without available

mplementation performing evaluation across different datasets. In this
ase, we present the results of the original papers in Table 6. Conse-
uently, there are many different factors between methods: number of
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Fig. 3. Average grading map per group of subjects.
Fig. 4. Typical grading maps (from individual subjects) for each state of disease with respect to age.
subjects in training/testing sets, selection criteria, etc. However, this
could help to get an idea of the performance of current methods in the
application of AD diagnosis/prognosis.

Overall, our method has most of the time the best or the second
best result. Furthermore, it should be noted that our model is trained
using only 340 images (from ADNI1) without any domain adaptation
technique but outperforms Efficient3D (trained on 2843 images) and
𝐴𝐷2𝐴 (with domain adaptation) in most of datasets/tasks.

4.2. Interpretation of deep grading maps

To highlight the interpretability capabilities offered by our DG
feature, we computed the average DG map for each group: AD, pMCI,
sMCI and CN (see Fig. 3). First, we could note that the average grading
increased between each stage of the disease. Second, we estimated the
top 10 structures with highest absolute value of grading score over
all the testing subjects. Nine of these structures were known to be
specifically and early impacted by AD. These structures were: bilateral
hippocampus (Frisoni et al., 2010), left amygdala and left inferior lat-
eral ventricle (Coupé et al., 2019), left parahippocampal gyrus (Kesslak
9

et al., 1991), left posterior insula (Foundas et al., 1997), left thala-
mus (de Jong et al., 2008), left transverse temporal gyrus (Liu et al.,
2012), left ventral diencephalon (Lebedeva et al., 2017). These results
showed a high correlation with current physiopathological knowledge
on AD (Jack et al., 2010).

Typical individual grading maps of each population (i.e., CN, sMCI,
pMCI, AD) were selected and are presented in Fig. 4. First, we observed
that older people had higher grade than younger people as expected.
Second, for the same age range, the color of grading maps changed pro-
gressively depending to the disease severity. Third, CN/AD populations
seemed to be more distinguishable from each other than sMCI/pMCI
populations. We observed high similarity between older sMCI patients
(80–90 years old) and younger pMCI patients (60–70 years old). This
might be the reason why the performance of AD prognosis was lower
than AD diagnosis and why the use of age improved the results of AD
prognosis. Finally, we observed that the earliest brain alteration started
from hippocampus and its surrounding regions (sMCI at 70–80 years
old in Fig. 4) and spanned over time to the whole brain (AD at 80–
90 years-old in Fig. 4). All of these findings demonstrated the potential
capacity of deep grading maps to assist clinicians in practice.
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Fig. 5. Consistency of grading maps between retrained grading models (models 1 & 3), and between grading models trained on different datasets (models 1 & 2).
4.3. Consistency study

Thibeau-sutre et al. have recently shown that for the same CNN
architecture, different training data or even training runs can lead to
different explanations (Thibeau-Sutre et al., 2020). They suggested that
a good explanation method should not depend on training data or train-
ing initialization. In this study, we analyzed these two aspects for our
grading maps (dependency to data training and model initialization) by
performing two experiments.

First, we trained two grading models (each one consisting of 125
U-Nets) on ADNI1 (model 1) and ADNI2 (model 2) datasets. For each
model, we then calculated the 𝐷𝐺𝐶 vector from the grading map for
all images in testing set (excluding ADNI1 and ADNI2). Finally, we
measured the cosine similarity of two 𝐷𝐺𝐶 vectors obtained from each
image. We obtained a median of 0.92 as similarity between two 𝐷𝐺𝐶
vectors from two models training on different datasets that demonstrate
the good robustness to domain shift of our method.

For the second one, we trained the grading model twice using only
ADNI1 as training set (models 1 & 3). Finally, we obtained a median
of 0.95 as similarity between 𝐷𝐺𝐶 vectors from two retrained models
on the same dataset that demonstrate the good robustness to training
initialization of our method.

Fig. 5 shows examples of individual grading maps for four con-
sidered populations (i.e., CN, sMCI, pMCI, AD). We can visually see
the similarities between grading models trained on different datasets
(i.e., models 1 & 2) and between grading models trained several times
on the same dataset (i.e., models 1 & 3). Overall, the three models
identify AD-related areas in a similar way. These experiments show the
consistency of Deep Grading maps across different training runs and
different training sets.

5. Discussion

In this paper, we proposed a novel deep grading framework dedi-
cated to Alzheimer’s disease diagnosis and prognosis. Our framework
was designed to overcome three main limitations of current deep learn-
ing methods for AD classification: performance compared to conven-
tional machine learning method (i.e., SVM), generalization to unseen
datasets/tasks and interpretability.
10
While many studies found that deep learning and SVM methods
had a similar performance for AD classification problem (Bron et al.,
2021; Wen et al., 2020), the authors also suggested that better model
design could improve the performance of DL methods. Indeed, Jo et
al. indicate that hybrid methods using CNN features and a conventional
classifier showed better accuracy than pure deep learning methods (Jo
et al., 2019). In this study, we combined CNN features with a GCN
classifier. The use of a GCN also allows to combine additional demo-
graphic information to further improve the model performance. As a
result, our model showed a better performance with a large margin
compared to traditional methods (e.g., SVM). Furthermore, a careful
design of edge connectivity in the subject’s graph may also boost
the model performance. In this study, we propose to define the edge
connection between two brain structures as the absolute difference of
their volumes. This type of connectivity allows our model to make
more accurate decisions. The analysis of this connectivity is provided
in Annexes.

This study is one of the few assessing deep model performance
on multiple independent datasets (i.e., ADNI2, AIBL, OASIS, MIRIAD)
and unseen tasks (i.e., AD prognosis) (Bron et al., 2021; Wen et al.,
2020; Yee et al., 2021; Liu et al., 2018b; Lian et al., 2020; Guan et al.,
2020). For AD diagnosis, the result on ADNI2 dataset was 87.6% in
BACC which was competitive with the current performance reported
in the literature. On OASIS, we achieved the second place with 89.1%
accuracy. On AIBL and MIRIAD, our model outperformed current state-
of-the-art methods with respectively 92.4% and 99.6%. Besides several
studies found a drop in performance when evaluating on independent
datasets (Bron et al., 2021; Wen et al., 2020). This performance drop
could come from differences in MRI protocols, age ranges, country of
origin and inclusion criteria. Our results demonstrated the high general-
ization capacity of our method against datasets with such differences.
Especially, the use of collective AI enabled a better generalization to
unseen tasks (i.e., AD prognosis) than other deep learning methods.
Finally, the use of the weighted fusion strategy could improve even
more the model performance (in AD diagnosis).

In terms of interpretability, our framework provides 3D grading
maps capable of indicating regions impacted by AD. The most im-
portant structures highlighted by our grading map were correlated
with knowledge about the disease in the literature. Furthermore, our
experiments showed that grading features were more efficient than
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volume features for both AD diagnosis and prognosis which confirmed
the finding of Coupé et al. (2012b, 2015). When coupling the grading
map with a GCN classifier, it yielded high performance across datasets.
Hence, grading maps are not only an interpretable visualization but
provide also discriminative features for AD classification. However, the
use of GCN made our framework become not fully interpretable. The
fully-interpretable framework can be done by replacing the final GCN
by an SVM classifier or a simple threshold. Although, this implies a
trade-off between interpretability and performance.

Compared to the explanation maps of explainable methods such as
Class Activation Mapping (Zhou et al., 2015) and Layer-wise relevance
propagation (Binder et al., 2016), our grading map exhibits interest-
ing properties. Indeed, our grading maps provide quantitative value
reflecting the disease severity, while explanation maps give qualitative
information about the relative importance of each feature during the
decision-making process. For example, in an explanation map of an
AD subject, we do not know if the non-highlighted regions (structures
unused by the models to take their decision) are healthy or just non-
informative (redundant information with other structures, too noisy
due to high inter-subject variability, etc.). Moreover, the explanation
maps are generally normalized to the same range of values [0, 1],
making the comparison of two explanation maps only qualitative.

This paper is among a few studies proposing an interpretable model
for AD classification problem. Another approach for an interpretable
model is to carefully design the graph neural network classifier and
its input. Li et al. define individual graphs using features extracted
from neuroimaging data and a graph neural network with ROI-aware
convolutional layer and an appropriate loss function (Li et al., 2020).
Similar to our result, this approach can provide both salient brain
regions at the subject level and the community level. However, similar
to explainable methods discussed above, it cannot provide quantitative
information on the disease severity for a given region.

While the performance of our framework across unseen datasets and
unknown tasks was quite high, there also exist some limitations. First,
the ground truth used for grading was potentially not optimal due to a
lack of consensus on structures relevant to Alzheimer’s disease. Indeed,
there may be some structures that are not impacted by AD and the
ground-truth of these structures should be zero. With our ground-truth
annotation, small structures surrounding another one highly related
to AD had a high chance to appear together in all patches. Thus,
those structures would be also predicted as related to AD. Another
direction should focus on an unsupervised learning manner to find only
abnormalities caused by AD to improve the interpretability. Second,
this study exploited only structural MRI while the performance could
be improved using multi-modal inputs such as PET, functional MRI, dif-
fusion MRI or perfusion MRI (Bron et al., 2017). Better disease patterns
are expected to be learned with this kind of input. However, a multi-
modal input implies even larger differences between different datasets.
Thus, a new generalization study should be considered to see if the
gain in performance from better disease patterns can overcome the
performance drop resulting from differences between different datasets.

6. Conclusion

In this paper, we addressed three major limitations of CNN-based
methods by introducing a novel interpretable, generalizable and accu-
rate deep grading framework. First, deep grading offers a meaningful
visualization of the disease progression. Second, we proposed a col-
lective artificial intelligence strategy to improve the generalization
on datasets owning differences such as MRI protocols, age ranges,
country of origin and inclusion criteria. Finally, we proposed to use a
graph-based modeling to better capture AD signature using both inter-
subject similarity and intra-subject variability. Based on that, our DG
method showed state-of-the-art performance in both AD diagnosis and
11

prognosis.
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Annexes

Performance measures using the AUC metric

This section presents the various performance measures of the paper using the AUC metric (see Tables 7–11).

Table 7
Comparison of different types of features for classification. All the edges are set to 1, the classifier used is GCN. Red: best result, Blue: second best result. The Area Under the
ROC Curve (AUC) is used to assess the model performance. The results are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained
on the AD/CN subjects of the ADNI1 dataset. Value in bold: 𝑝 of one-sided Wilcoxon test comparing with baseline (in gray) is lower than 0.05, meaning a significantly superior
performance is found compared to the baseline.

No. Features Diagnosis (AD/CN) Prognosis (p/sMCI) Global diagnosis
(AD/CN)

Global prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32 𝑁 = 1434 𝑁 = 332

1 𝐷𝐺𝐼 97.3 94.8 93.1 99.5 74.8 74.6 95.6 74.3
2 𝐷𝐺𝐶𝑛𝑤 96.8 96.5 95.3 100.0 76.7 77.1 96.2 76.6
3 𝐷𝐺𝐶 96.5 96.4 95.3 100.0 76.6 77.1 96.2 76.6
4 𝑉 71.2 75.7 79.7 78.3 58.1 62.1 76.3 58.7
5 𝐴 54.2 55.1 38.3 48.8 49.9 44.7 44.7 49.5
6 𝑉 ,𝐴 68.0 68.5 57.7 64.9 53.6 56.4 60.9 53.8
7 𝐷𝐺𝐶 , 𝑉 95.8 96.9 94.5 99.9 76.5 77.6 95.7 76.5
8 𝐷𝐺𝐶 , 𝐴 96.6 97.5 93.3 100.0 77.4 76.5 95.2 77.0
9 𝐷𝐺𝐶 , 𝑉 , 𝐴 95.9 97.5 92.8 99.9 77.4 76.9 94.8 77.0

Table 8
Comparison of different graph edge types. The classifier used is GCN and the input features is 𝐷𝐺𝐶 and A. Red: best result, Blue: second best result. The Area Under the ROC
Curve (AUC) is used to assess the model performance. The results are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the
AD/CN subjects of the ADNI1 dataset.

Edge Diagnosis (AD/CN) Prognosis (p/sMCI) Global diagnosis (AD/CN) Global prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32 𝑁 = 1434 𝑁 = 332

Fully-one 96.6 97.5 93.3 100.0 77.4 76.5 95.2 77.0
Correlation 96.8 97.4 93.0 100.0 77.3 76.9 94.1 76.8
Volume difference 96.8 97.5 93.4 100.0 77.3 76.6 94.4 76.9

Table 9
Comparison of different classifiers. For graph-based approaches (i.e., all the approaches except SVM and multi-layer perceptron), the edge based on structure volume difference is
used and the input features is 𝐷𝐺𝐶 and A. Red: best result, Blue: second best result. The Area Under the ROC Curve (AUC) is used to assess the model performance. The results
are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN subjects of the ADNI1 dataset.

Classifier Diagnosis (AD/CN) Prognosis (p/sMCI) Global Diagnosis (AD/CN) Global prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32 𝑁 = 1434 𝑁 = 332

SVM 94.9 95.5 93.8 99.9 76.1 77.1 93.7 76.1
Multi-layer perceptron 90.4 92.8 91.0 99.9 73.0 74.9 89.7 72.8
Transformer 96.4 96.6 93.6 99.9 77.1 75.3 94.6 76.6
SAGE 96.7 97.4 93.0 99.9 77.1 76.0 94.1 76.6
ResGatedGraph 84.6 87.6 81.9 92.7 70.5 71.0 84.0 70.4
GAT 96.6 97.2 92.7 100.0 77.5 76.9 93.6 77.0
TAG 96.6 97.0 92.9 99.9 77.1 76.8 94.0 76.7
GCN 96.8 97.5 93.4 100.0 77.3 76.6 94.4 76.9
12



Computerized Medical Imaging and Graphics 104 (2023) 102171H. Nguyen et al.
Table 10
Comparison of our method with state-of-the-art methods that have been retrained on our training dataset using the available code and tested on our dataset. Red: best result,
Blue: second best result. The Area Under the ROC Curve (AUC) is used to assess the model performance. All the methods are trained on the AD/CN subject of the ADNI1 dataset,
the same training/testing partition is used for evaluation.

Method Diagnosis (AD/CN) Prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL
𝑁 = 330 𝑁 = 279 𝑁 = 756 𝑁 = 69 𝑁 = 300 𝑁 = 32

Patch-based CNN (Wen et al., 2020) 79.3 86.8 87.8 88.6 65.5 52.5
ROI-based CNN (Wen et al., 2020) 90.8 90.8 92.7 97.4 69.6 75.0
Subject-based CNN (Wen et al., 2020) 85.4 90.4 92.4 98.8 70.0 59.6
Voxel-based SVM (Wen et al., 2020) 93.8 93.6 93.6 99.4 74.3 75.0

Our method 96.6 97.5 93.3 100.0 77.4 76.5

Table 11
Comparison of our method with state-of-the-art methods using published results. Red: best result, Blue: second best result. The Area Under the ROC Curve (AUC) is used to assess
the model performance. All the methods are trained on the AD/CN subject of the ADNI1 dataset. However, there are many different factors: number of subjects in training/testing
sets, selection criteria, etc.

Method Diagnosis (AD/CN) Prognosis (p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL

Landmark-based CNN (Liu et al., 2018b) 95.9 – – 97.2 – –
Hierarchical FCN (Lian et al., 2020) 95.1 – – – 78.1 –
𝐴𝐷2𝐴 (Guan et al., 2020) 93.4 92.5 – – – –
Efficient3D (Yee et al., 2021) – – – – – –

Our method 96.6 97.5 93.3 100.0 77.4 76.5

Cross-brain regions connectivity analysis

To analyze the cross-brain regions connectivity, we compute two averaged adjacency matrices (i.e., edge weights) respectively for all AD patients
and all CN subjects using the absolute difference of volumes. After that, we compute the absolute difference of these two matrices (see Fig. 6).
This results in a matrix of size 133 × 133, we then select 25 highest values (top 0.14% highest values). These values correspond to 25 pairs of
structures. Among these pairs of structures, we observe some structures that have been presented in Section 4.2, such as bilateral hippocampus,
left amygdala, left parahippocampal gyrus and left ventral diencephalon. These structures have been shown to be related to AD (Coupé et al.,
2019; Frisoni et al., 2010; Kesslak et al., 1991; Liu et al., 2012). In AD patients, these structures may present more atrophy volumes than other
structures. In CN people, the atrophy volumes of these structures (due to the normal aging process) may be close to other structures. Thus, the
absolute difference volumes should be a discriminative feature for AD classification. And in our case, using the absolute difference volumes as the
edge weights allows an improvement in performance.

Fig. 6. Averaged adjacency matrices of AD population (left) and CN population (right). All the values are normalized to [0, 1] for visualization.
13
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